Structure-function studies of cholera toxin and its A and B protomers. Modification of tryptophan residues.

نویسندگان

  • M J De Wolf
  • M Fridkin
  • M Epstein
  • L D Kohn
چکیده

The tryptophan residues on cholera toxin and its A and B protomers have been modified by reaction with 2-nitrophenylsulfenyl chloride and 2,4-dinitrophenylsulfenyl chloride. Modification of the tryptophan residues of cholera toxin results in complete loss of toxicity measured in a skin permeability assay. Modification of cholera toxin and its B protomer results in the complete loss of binding activity toward membrane receptors, the ganglioside galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylceramide (GM1), and the oligosaccharide moiety of the ganglioside GM1. Modification of cholera toxin and its A protomer results in a complete loss of the ADP-ribosylation activity exhibited by their native counterparts. Modification of the A protomer results in no apparent change in its physical properties by sedimentation velocity in the ultracentrifuge or by gel filtration chromatography. Modification of the B protomer, either directly or when it remains a component part of the holo toxin structure, results in a change in its sedimentation value and its elution from gel filtration columns. The changes are compatible with a conversion of the B protomer from a pentameric moiety in aqueous solvents to its existence as a monomer unit, i.e. to the individual polypeptide chains comprising the native B pentamer. Thiolysis of the 2,4-dinitrophenylsulfenyl chloride derivative of the B protomer reaggregates the individual-polypeptide chains but does not return its ability to interact with GM1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production of Chicken Egg Yolk Antibody (IgY) Against Recombinant Cholera Toxin B Subunit and Evaluation of Its Prophylaxis Potency in Mice

Background: Cholera toxin (CT), responsible for the harmful effects of cholera infection, is made up of one A subunit (enzymatic), and five B subunits (cell binding). The release of cholera toxin is the main reason for the debilitating loss of intestinal fluid. Inhibition of the B subunit (CTB) may block CT activity. Objective: To determine the effect of anti CTB-IgY against oral challenge with...

متن کامل

A Single Point Mutation within the Coding Sequence of Cholera Toxin B Subunit Will Increase Its Expression Yield

Background: Cholera toxin B subunit (CTB) has been extensively considered as an immunogenic and adjuvant protein, but its yield of expression is not satisfactory in many studies. The aim of this study was to compare the expression of native and mutant recombinant CTB (rCTB) in pQE vector. Methods: ctxB fragment from Vibrio cholerae O1 ATCC14035 containing the substitution of mutant ctxB for ami...

متن کامل

Location of tryptophan residues in free and membrane bound Escherichia coli alpha-hemolysin and their role on the lytic membrane properties.

alpha-hemolysin (HlyA) is an extracellular protein toxin secreted by Escherichia coli that acts at the level of plasma cell membranes of target eukaryotic cells. Previous studies showed that toxin binding to the bilayers occurs in at least two ways, a reversible adsorption and an irreversible insertion. Studies of HlyA insertion into bilayers formed from phosphatidylcholine show that insertion ...

متن کامل

PCR-MEDIATED CLONING A ND EXPRESSION OF THE GENE FOR THE B-SUBUNIT OF VIBRIO CHOLERAE TOXIN ISOLATED RECENTLY IN IRAN

Knowing the nucleotide sequence of the cholera toxin operon, we designed oligonucleotide primers for its-PCR amplification from local clinical isolates of V. cholerae. The resulting amplification product was cloned in a common pUC18 vector. Subsequently, a part of this operon encoding the cholera toxin Bsubunit (CTB) was reamplified and cloned between the BamH1 and EcoR1 sites of the same ...

متن کامل

Expression of Recombinant Protein B Subunit Pili from Vibrio Cholera

Background & Aims: Vibrio cholerae is a gram-negative bacterial pathogen that causes cholera disease. Following ingestion by a host and entry into the upper intestine, V. cholera colonizes and begins to emit enterotoxin. One of the most pathogenic factors of Vibrio cholera is toxin-coregulated pili (TCP). ToxinCoregulated pili is as the primary factor requiered for the colonization and insisten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 256 11  شماره 

صفحات  -

تاریخ انتشار 1981